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Background

n Alternative agents being developed
- Environmentally friendly

s Performance evaluation impeding progress
- Full-scale test required to determine performance

m Lack of understanding of foam
extinguishment mechanism

- Current small-scale tests not measuring all
Important parameters

- Performance a function of multiple parameters



Background

m Goals of study
- Accelerate the evaluation process of foam
e Develop model
— Predict full-scale performance of a foam

» Use / develop small-scale tests

— Measure performance of specific aspects of
foam

« Drainage, evaporation, spreading
characteristics

— Model input data
- Near term goal of predicting MIL-SPEC test
« 28 and 50 ft2 MOGAS pool fires



Previous Work

s Swedish National Laboratory and Research
Institute (SP)
- Small-scale tests
» Drainage and evaporation rates
* Viscosity of foam
- Large-scale foam spread tests
« With and without fire
- Nozzle characterization
« Some velocity and mass distribution
- Modeling
« Simplified 1-D cases
* Meshing of 1-D cases for 2-D case



Previous Work

s SP (continued)

- Conclusion
* Modeling approach not capable of predicting
very large scale tests with hose line application
m Several studies on modeling foam drainage
and evaporation
- Perssons et al. (1992, 1996, 1997), Magrabi, et al.
(1997)
= Ablation model for Hi-Ex foams
- Boyd and Di Marzo (1998)

= Rheology of foam
- Gardiner et al. (1998)
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Modeling Approach




Modeling Approach

= Field model
- Model foam spreading

 Gravity driven flow
— Hydraulics / hydrology of river flows

- Divide space above fuel into a single layer of cells
 Cell thickness varies
« Average properties over height of foam
- Source terms from small-scale test data
» Solution drainage
 Solution evaporation
 Foam addition from nozzle
 Momentum from nozzle spray
« Shear force between foam and fuel



Modeling Approach

= [hermal modeling
- Radiation from fire to foam
« Emissive power of fire and configuration factors

- Evaporation of foam dependent on predicted
incident flux onto foam

- No predictions of foam temperatures in initial
versions

« Small-scale testing shows no heat transfer to
fuel until foam less than 25 mm (1.0 in.) thick



Equations of Motion
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Equations of Motion

s Other body forces
Shear between foam and fuel
Shear from external air currents

« Wind

 Air entrainment into fire
Momentum from foam application
Surface tension

= Various boundary conditions
- Effects of obstructions



Numerical Methods

s Hyperbolic set of partial differential equations

- Unsteady shallow water equation

- Review Zappou and Roberts (20037?) of different
numerical schemes

» Godnov-type schemes better than finite difference
— Approximate Riemann solvers

« 2" order accurate approximate Riemann solvers
— High resolution, robust, efficient
— Optimal for application

- Weighted Average Flux (WAF) routine implemented
« 2" order accurate
 Robust and efficient [L:l



1-D Shallow Water Equation

0h N 0(uh)
ot 0x

Ouh) , 9 (u2h+lgh2j:0
ot 0x 2

= 0.

s Assumptions
- No source terms
- Constant density
= Verification

- Compared against exact solutions to Riemann
problem

H



Dry Bed Problem

Time i =0.000 s
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Dry Bed Problem
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Wet Bed Problem

Time t=0.000 s
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Wet Bed Problem
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Red Sea Problem
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Red Sea Problem
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Wave Reflection
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Next Steps in Modeling

= Adding in source terms
- Frictional shear between the flow and the bed
- Mass losses and gains
- Validation

m 2-D solutions
- Validation

s Foam flows



Experimental —Evaporation, Drainage,

Suppression

mn Static foam layer
- Evaporation
- Drainage
- Time to fuel ignition
* Suppression model
s Develop simple predictive methods

n Verify predictive methods
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Test Apparatus
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Test Conditions

s Foam Height
- 25,50, and 75 mm

s EXxpansion Ratio
- 3,6, and 10
= Irradiance
- 0, 20, 35, and 50 kW/m?

= With and without fuel (JP-5)
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Summary of Results

» Increasing irradiance
- No affect on drainage rate
- No affect on temperature distribution in foam
- Decreases time to ignition
- Increases evaporation rate

m Increasing foam height
- No affect on evaporation rate
- Affects drainage rate with time
- Increases time to ignition

m Increasing expansion ratio
- No affect on time to ignition

- Slight affect on evaporation rate
- Decreases drainage rate



Predicting Evaporation Rate

m Energy balance at foam surface
- Foam preheated to 100°C

- Ignore effects of bubble bursting, foam density at surface,

transient heating
- Foam is a gray surface
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mevap - Ah
hfg
_ evap
Q o = 2,257
thg cl



Effective Absorptivity

Predicting Evaporation Rate
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Predicting Mass Drained

m Mass drained is related to foam mass on fuel
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Drain Rate [kg/(s m?)]

Predicting Mass Drained
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Time to Ignition [s]

Time to Ignition
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Evaporation, Drainage and Suppression
Models

s Evaporation
- Effective absorptivity

s Drainage
- Foam mass to predict drainage rate
» Develop a reference curve
— 75 mm thick foam layer
— Moderate irradiance level (20 kW/m?)
m Suppression

- Critical foam mass
* 0.90 kg/m?



Drain Rate [kg/(s m?)]

Validation of Drainage and Evaporation
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Validation of Drainage and Evaporation

Models

14 |||||||||||||||||||||||
: O  h=25mm

12 - B  h=50 mm
1 — — Model, h=25mm, a=0.42
] Model, h=50mm, a=0.42

10 - Model, h=50mm, a=0.36
1 Model, h=50mm, a=0.48

8 -

Drained Mass [kg/m?]

0 100 200 300 400 500 600

Time [seconds]

Expansion Ratio = 6
Initial Height = 25 and 50 mm
Irradiance = 50 kW/m?2

Evaporated Mass [kg/m?]

10 4=

oo
A T

A h=25mm

& h=50 mm
— — Model, h=25mm, a=0.42
Model, h=50mm, a=0.42
Model, h=50mm, a=0.36
Model, h=50mm, a=0.48

0

100

200 300 400 500

Time [seconds]

600

H



Validation of Drainage and Evaporation

Models
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Validation of Drainage and Evaporation

Models
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Next Steps in Experimental Work

m State equation for foam
- Predict density

a Density profile
- Potential sub-grid refinement of solution

n Effects of foam addition on drainage and
evaporation rates

s Foam spreading parameters
- Frictional shear between foam and fuel
- Wind shear
- Nozzle momentum
- MIL-SPEC nozzle characterization



Accomplishments

s Solved and verified 1-D shallow water
equations

s Developed and verified models for foam
solution mass drained and evaporated

m Developed model for fuel ignition

s Developed theoretical models for some
source terms

- Frictional shear for non-newtonian fluids
- Wind shear
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Timeline for FY 03

TASK

Feb

Mar

April May

June

July

Aug

Sept

1

Spreading Model

-1

Source Terms

-2

2-D

-3

Foam Flows

Static Small-Scale Testing

-1

State Equation for Foam

2

Density Profile

3

Effects of Foam Addition (UMD)

Foam Spread Testing

-1

Foam-Fuel Shear

-2

Wind Shear

-3

Nozzle Momentum (UMD)

MIL-SPEC Nozzle Characterization (UMD)

1

Density Distribution

2

Velocity and Foam Drop Size

-1
[_




Timeline for FY04

TASK

Oct

Nov

Dec

Jan

Feb

Mar

April

June

July

Aug

Sept

1

Spreading Model

-1|Foam Flows

-2|Validation with MIL SPEC Test

-3|Predictions of Larger Fires

2

Static Small-Scale Testing

-1|Effects of Foam Addition (UMD)

-2|Data for AFFF using Nozzle

Foam Spread Testing

-1|Data for AFFF using Nozzle

4

MIL-SPEC Nozzle Characterization(UMD)

-1|Density Distribution

-2|Velocity and Foam Drop Size

Other Nozzle Characterizations (UMD)

-1|Density Distribution

-2|Velocity and Foam Drop Size

Large Scale Fire Suppression Testing (NRL)

-1|MIL SPEC 28 and 50 ft?

-2|Larger Fire Tests




Publications

s Journal Articles

- Lattimer, Hanauska, Scheffey, and Williams, 2003, “The Use
of Small-Scale Test Data to Characterize Some Aspects of
Firefighting Foam for Suppression Modeling”, Fire Safety
Journal, in press.

s Conference Proceedings

- Lattimer, 2003, “Modeling AFFF", Proceedings of the
Workshop on Fire Suppression Technologies, February 25-
26, Mobile, Alabama.



Drainage and Evaporation Rate
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Foam Height and Temperature
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Drainage and Evaporation Rate
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Drainage and Evaporation Rate
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Predicting Mass Drained
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